Higher-power harmonic maps and sections

نویسندگان

چکیده

Abstract The variational theory of higher-power energy is developed for mappings between Riemannian manifolds, and more generally sections submersions applied to vector bundles their sphere subbundles. A complete classification then given left-invariant fields on three-dimensional unimodular Lie groups equipped with an arbitrary metric.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Maps and Biharmonic Maps

This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

متن کامل

Harmonic maps and soliton theory

The study of harmonic maps of a Riemann sphere into a Lie group or, more generally, a symmetric space has been the focus for intense research by a number of Differential Geometers and Theoretical Physicists. As a result, these maps are now quite well understood and are seen to correspond to holomorphic maps into some (perhaps infinite-dimensional) complex manifold. For more information on this ...

متن کامل

Constructing Buildings and Harmonic Maps

In a continuation of our previous work [20], we outline a theory which should lead to the construction of a universal pre-building and versal building with a φ-harmonic map from a Riemann surface, in the case of two-dimensional buildings for the group SL3. This will provide a generalization of the space of leaves of the foliation defined by a quadratic differential in the classical theory for S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2022

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-022-09875-9